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COMPARISON OF UP-SCALING METHODSIN POROELASTICITY AND
ITSGENERALIZATIONS

James G. Berrymah

ABSTRACT

Four methods of up-scaling coupled equations at the miateso equations valid at the mesoscale
and/or macroscale for fluid-saturated and partially sé&drporous media will be discussed, compared,
and contrasted. The four methods are: (1) effective medheurt, (2) mixture theory, (3) two-scale
and multiscale homogenization, and (4) volume averagingl.thse methods have advantages for
some applications and disadvantages for others. For exaeffgctive medium theory, mixture theory,
and homogenization methods can all give formulas for caeffis in the up-scaled equations, whereas
volume averaging methods give the form of the up-scaledteamnssbut generally must be supplemented
with physical arguments and/or data in order to determirectefficients. Homogenization theory
requires a great deal of mathematical insight from the userder to choose appropriate scalings for
use in the resulting power-law expansions, while volumeagiag requires more physical insight to
motivate the steps needed to find coefficients. Homogenizafiten is performed on periodic models,
while volume averaging does not require any assumption nbgieity and can therefore be related
very directly to laboratory and/or field measurements. digliof the homogenization process is often
limited to specific ranges of frequency — in order to justtig tscaling hypotheses that must be made
— and therefore cannot be used easily over wide ranges afdremy. However, volume averaging
methods can quite easily be used for wide band data anaBisve learn from these comparisons that
a researcher in the theory of poroelasticity and its geizatédns needs to be conversant with two or
more of these methods to solve problems generally.

Keywords: poroelasticity, effective medium theory, homogenizatiop-scaling

INTRODUCTION

The earth is typically probed with seismic waves in the rahgé00 Hz, with well-logging
tools in the rangd — 50 kHz, and samples of the earth in the laboratory fr2d6 — 1000
kHz. The pertinent wave speeds for water and typical solitheaaterials like quartz are,
respectively, 1.5 km/s and about 6.0 km/s. So the range otleagths of interest in the
field can vary from as much as 60 to 6000 m in the field to as kE#Hel.5 to 7.5 mm in the
laboratory. Clearly the main purpose of laboratory measerds of earth materials is generally
to elucidate the physical mechanisms of wave propagatidhdrearth. But the differences
in the pertinent length scales is so great that unusual cast be taken to perform proper
interpretation of the results — taking into account all thherent problems with up-scaling.

1Univ. California, Lawrence Livermore National Lab., P.C0y8808 L-200, Livermore, CA 94551-9900 Tele-
phone: 925-423-2905 FAX: 925-423-6907 E-mail: berrymatidi@ov.



In particular, since earth materials are notoriously logfeneous, it is very important to have
some means of studying the effects of these heterogeneiti@gaves. So up-scaling in earth
sciences applications is not an academic issue, but ofeemtin scientific issue for many
important applications.

The most common approach to dealing with earth heterogef@itseismic waves is to
assume the earth is homogeneous locally, but composed of lagers (Ewing et al. 1957;
Brekhovskikh 1980). This approach can be useful for apfitina to large scale earth imaging
and earthquake analysis. But in matters where fluids in thé @aportant, such as oil and
gas exploration, hydrology, etc., the elastic approxiomaiis usually not good enough and
must either be supplemented or replaced altogether witle aqgpropriate choices of equations
and analysis methods. Early examples of such analysedm@iot (1941), Frenkel (1944),
Gassmann (1951), Biot (1956a), Biot (1956b), Biot (1962) Hwarks which then provided a
strong foundation for modern poroelastic analysis.

Our goal here will be to give a brief accounting of some of thestrimportant methods
used to do up-scaling in poroelasticity and also multi-eqadroelasticity. The main methods
we consider here are: (1) effective medium theory (KusterBokstz 1974; Berryman 1992;
Berryman and Berge 1996), (2) mixture theory (Bedford andniheller 1979; Drumheller
and Bedford 1980; Bedford and Drumheller 1983; Bedford 1985 two-scale and multiscale
homogenization (Burridge and Keller 1981; Auriault and Bou994; Auriault and Royer
2002; Auriault 2002), and (4) volume averaging (Pride etl8P2; Pride and Berryman 1998;
Berryman and Pride 1998; Whitaker 1999; Whitaker 2002; Webdl. 2003). All these
methods have advantages for some applications and digadearfor others. In a short review,
it will not be possible to cover everything that is importarBut we will try to cover here
those relationships among the methods that are usuallyxptred in other discussions. In
particular, it is the author’s attitude that these methaodsat so much competitive as they are
complementary. It will be one of our main goals then to clavifiy and in what sense this is
true.

EFFECTIVE MEDIUM THEORIES

Effective medium theories for heterogeneous media havadirantage that they can be
used to obtain direct estimates of overall physical cotstaumch as bulk modulus, shear mod-
ulus, density, etc. There has been a tremendous amount kfdeoe along these lines in the
last 40 years, and recent progress on both bounding metmoblefgective medium theories
was summarized recently by Milton (2002). In the earth smenthe most commonly used
effective medium theory in elasticity is the one developgKhbster and Toksoz (1974). This
theory and a related one [usually called the Mori-Tanakaa{Benveniste 1987)] have been
discussed and their limitations explored by Berryman ang)®8€1996).

For heterogeneous poroelasticity, there have been feiemtigé medium theories devel-
oped and we will mention only two here, as originally desedilby Berryman (1992). The two
approaches are the CPA (Coherent Potential Approximatind)the DEM (Differential Effec-
tive Medium). We present just the results here. The deamatcan be found the references.

Coherent Potential Approximation

Suppose the heterogeneous medium is composed of some n(gape) of constituents,
then the bulk modulug’(x) = K, whenx is inside thejth constituent, and similarly for the
shear modulugs. Brackets(-) imply a simple volume average. Then, for the bulk modulus



estimate of the CPA, we have

1 1
* 4 x = < 4 x > ’ (1)
K&pa+3Gtpa K(x)+3Gtpa

while, for the shear modulus estimate, we have

= < : > @
Gopat Fepa G(x)+ Fepa /'
where the functioF” = F'(K, G) is defined by
F = (G/6)(9K + 8G)/(K + 2G). (3)

Starred quantities in these formulas are the overall esisnar else the functions evaluated
at those same starred values. Note that (1) and (2) are itngdigpled equations, requiring
simultaneous iteration for their solution. Formulas lik& &nd (2) are based on the assumption
that the inclusions are spherical in shape. For ellips@tapes, (1) and (2) are modified based
on Eshelby’s well-known results in elasticity (Eshelby T98avko et al. 1998).

Differential Effective Medium

If there are only two constituents (a binary mixture) whoskime fractions are = v,
andy = v = 1 — z, then suppose we know the value of the effective bulk modidgs;,,(v)
at one value ofy. TreatingK7,;,,(y) as the host medium anli},;,, (v + dy) as the effec-
tive constant after a small proportiaty /(1 — y) of the host has been replaced by spherical
inclusions of type-2, the bulk modulus estimate from the DEkthod is determined by

KppmW+dy) —Kppy(y)  dy Ko — Kppy(y) .
Khpy(y+dy) +5Ghen(y)  (L—y) Ky + 535Gy (1Y)
Since the host contains the volume fractioof type-1 andy of type-2, on average a fraction

dy/(1 — y) of the host must be replaced by type-2 in order to change taelb\fraction of
type-2 toy + dy. Taking the limitdy — 0 gives the first order differential equation

d . Ky — Kppu(y)

(4)

) Kpem(y) + %G*DEM(YJ) ) (5)

where the initial host is pure type-1 $6},,,,(0) = K;. The corresponding formula for the
shear modulus is

_ Gs — Gppu(Y)
Go+ Fphpy(y)

(1= )5 (Chru(w) o) + Foma ()] ©)
where I is again determined as in (3). Note that (5) and (6) are coupfe must therefore
be integrated simultaneously. There are two distinct tesaiplied by (5) and (6), one for
type-1 as host and another, by interchanging roles of thetitoents, for type-2 as host. In
contrast, CPA produces only one estimate and is, thereforagtimes called the “symmetric
self-consistent” approach. DEM is obviously non-symnestrithis sense, depending explicitly
on one constituent or the other playing host.



Brief Discussion

Although both of these sets of formulas are actually of thmesform as would be found
in the simpler theory of elasticity, the constants and tesylioted here foK™* andG* are all
assumed to be the frame constants for porous constituedtfoathe porous frame overall.
Furthermore, both types of EMT estimates are supplememntgubrioelasticity by additional
equations for the other coefficients in the full set of poasét equations. Space will not permit
us to pursue this discussion any more here. But the main fobe made about these methods
is this: They sometimes give explicit, or more typically it (to be iterated or integrated),
formulas for all the coefficients in the equations. Resuksapproximate, but for the methods
presented here, the results are always within the knowmaigobounds (Milton 1985; Norris
1985; Avellaneda 1987; Milton 2002), and therefore alwaye geasonable approximations
to the results when the form of the equations is known and thrdwalues of the coefficients
are needed. Related effective medium theory estimatiohadsthave also been used recently
to clarify the behavior of the poroelastic shear modulus@firesence of undrained fluids by
Berryman et al. (2002).

MIXTURE THEORY

The term “mixture theory” is sometimes used as a generic ferrany and all up-scaling
methods. In this sense the venerated estimates of VoigBj1&&l Reuss (1929), which —
for isotropic composites — are just the mean and harmonicnmespectively of the elastic
constants, have been available since the 1920s and wertfay period of time about the only
types of estimates known, except for effective medium themtimates (Bruggeman 1935)
similar in spirit to those described in the previous sectiBut Hill (1952) later showed that
these estimates of Voigt and Reuss were really rigorousdsoon the elastic constants, thus
changing our view of such estimates forever.

For our present purposes, we will use “mixture theory” in Hedent sense, motivated
largely by work in the 1970’s and 80'’s by Bedford and Druméxe(Bedford and Drumheller
1979; Drumheller and Bedford 1980; Bedford and Drumhel@83; Bedford 1985). Their
approach was based on energy principles, and all of this wauld be viewed as variational
methods using either Lagrange’s or Hamilton’s principlesthis regard, their work is in the
same class as that of Biot's works on poroelasticity (Biot1;9Biot 1956a; Biot 1956b; Biot
1962), as well as Berryman and Thigpen (1985), Lopatnikay @heng (2002), and — of
course — many others. In their series of papers, Bedford andhbeller showed how to use
variational principles for up-scaling in a number of difat complex systems, including but
not limited to poroelastic systems.

One of the classic problems that must be dealt with in a pastiel system — thus mak-
ing the theory ultimately much more difficult conceptualhah simple elastic or viscoelastic
systems — is the fact that finite fluid permeability is an esgakfeature of all these systems.
Without this feature, the system is just elastic or viscstgda Furthermore, the main poroe-
lastic complications have to do with the ability of the fluim move in or out of any given
domain of the pore system, and the time scales over whictotuisrs. This capability is dis-
tinct from features of any elastic system, linear or nordinéractured or unfractured, because
the concept of a domain is itself rooted in the idea of thetielas viscoelastic materials be-
ing in welded contact almost everywhere. Although any spdidicle may move substantially
from its original position at the beginning of any motion @alculation), nevertheless it always
remains relatively close to the same particles who weredightoors at the beginning of the
motion/calculation. This trait is not necessarily shargdflbid particles (although for very



small strains, as in the case of small amplitude sound wévisxften satisfactory to treat the
system if it is also true for the pore fluids). So for very snséidins, it may be adequate in some
cases to treat fluids purely elastically. But this case ibaipby again limited to problems that
lie outside the domain of interest when we are studying pastieity. Circumstances resulting
in trapped fluids can come into play dynamically if the freggies of the motion involved are
are very high (Kaelin and Johnson 1998), or if permeabil@iugs can fluctuate greatly during
the motion so parts of the system become effectively unddain

Biot’stheories

Biot’s papers on linear wave propagation in porous mediat(B956a; Biot 1956b; Biot
1962) all were based on a Lagrangian formulation that p&eththe introduction of a dissipa-
tion functional in order to incorporate viscous losses duthé motion of pore liquids during
the passage of the wave. The early pair of papers is probaslykinown to most readers, but
the 1962 paper has conceptual advantages over the earisy and so we tend to base our
work more on this paper than on the other two — however, thesdill much to be learned
from all three. Biot also changed his notation for the cogdfits in 1962, as this was made
necessary by the introduction of the concept of the increrokfiuid content( as one of the
fundamental variables of the theory.

Energy functional

The reason for this shift is fairly easy to understand from ploint of view Hamiltonian
dynamics. There is no particular reason to prefer one chafic@riables over another from
the point of view of the kinetic energy in the system. Eachsitslly sensible choice involves
about the same analysis and the same amount of work. But, thienpoint of the internal
energy of the macroscopic system there is a clear perfeffentke notation of Biot (1962).
The reason is that, after we have analyzed the energy andscagic variables that go into it,
the result for an isotropic system can be written (notatiseduhere is not Biot's) as:

2 = |p2 — 2apeps + ap}/B| /K, ™

wherep. andp; are, respectively, the external confining pressure and tine gbre pressure,
K is the bulk modulus of the drained systemis the Biot-Willis parameter (Biot and Willis
1957), andB is Skempton'’s coefficient (Skempton 1954). All the variabded coefficients in
this equation are well-defined macroscopic quantities ¢aatbe measured with relative ease
in the laboratory. No microstructural variables appeaehetarting from this equation it is
then natural in the context of Hamiltonian dynamics to asktdre the variables conjugate to
the macroscopic stresses= —p. ando; = —p;. The results are

OF oF
= 9. and —(= ?q

(8)

e

The straire is simply the overall strain of the system. The new variafstang the point of view
of elasticity) is the increment of fluid conte(it= ¢(e — ef), whereg is the overall porosity of
the system and; is the overall strain of the pore fluid.

The internal energy of the system can now be rewritten indesfia and( as

2F = K, [62 — 2BeC + BC2 /a] : (9)

The new coefficient appearing here is the undrained moddltisecsystemk, = K;/(1 —
aB), also known as Gassmann’s modulus (Gassmann 1951) — oridhedhstitution formula
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(since the fluid bulk modulus is containedit). The constitutive relations following from these
energy equations are

e=—(p.—oaps)/Kqg and  —(=—a(p.—ps/B)/Kq, (10)
and
—pe = Ky (e — BQ) and —pf=BK,(e—(/a). (11)

The meaning of the coefficied{; is very easy to understand as it is simply the bulk modulus
of the drained system (liquid either absent or free to mowanih out of the system as required
under changes of confining pressprewhile p; remains unchanged). Skempton’s coefficient
is defined for the other extreme of a fully undrained systehene the pore fluid pressure nor-
mally increases due to an increase in confirning pressure; th= (0ps/0p.)|c=o0. Similarly,

the Biot-Willis effective stress coefficient = (Op./0pf)|e=0 = 1 — K4/ K, whereK; is
the “unjacketed modulus” of the porous system. The modHiyss exactly equal to the grain
modulus if this is constant throughout the system (Brown Hodinga 1975), but its rela-
tionship to the moduli of the constituents is more compédatvhen multiple constituents are
present. In general it should be treated as an effective me@Berryman and Milton 1991),
or as an experimental parameter to be determined.

Wave equations of single-porosity poroelasticity

For long-wavelength disturbances (> h, whereh is a typical pore size) propagating
through a single-porosity porous medium, we define averalyees of the (local) displacements
in the solid and also in the saturating fluid. The averagdakgpment vector for the solid frame
is u, while that for the pore fluid is1;. The average displacement of the fluid relative to the
frame isw = ¢(u — uy). For small strains, the frame dilatationdswhile the increment of
fluid content is defined by

(=-V-w=d¢(e—ey). (12)

Biot introduces a kinetic energy functional in addition ke tinternal energy of (7) and
then uses a standard Lagrangian variational approach iteedbe wave equations of motion.
With time dependence of the foraxp(—iwt), the coupled wave equations that follow in the
presence of dissipation are

—w?(pu+ prw) = HVe — OV( + Gy (Vzu - Ve) ,
—w?(ppu+qw) = CVe — MV( = —Vpy, (13)
whereGy; is the drained shear modulud, C, and M are bulk moduli,
p=¢ps+(1—9)pm, (14)
and
q(w) = ps /¢ + iF(E)n/kw] . (15)

The kinematic viscosity of the liquid ig; the permeability of the porous frame#s the dy-
namic viscosity factor is given approximately [or see Jaimet al. (1987) for more discus-
sion], for our choice of sign for the frequency dependenge, b

F(¢) = ${ET(&)/11 +2T(€) /i€]}, (16)
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where

_ bef(£) — ibei ()
 ber (&) — ibei (€)

T(¢) (17)

and

£ = (wfwo)? = (war/ng)? = (Wh?/n)3. (18)

The functions bdi) and be{¢) are the real and imaginary parts of the Kelvin function. The
dynamic parametek is a characteristic length generally associated with amdpawable in
magnitude to the steady-flow hydraulic radius. The tortyasi> 1 is a pure number related
to the frame inertia which has been measured (Johnson €&#) and has also been estimated
theoretically (Berryman 1980; Berryman 1983).

The coefficientsH, C, and M are given by (Gassmann 1951; Geertsma 1957; Biot and
Willis 1957; Geertsma and Smit 1961; Stoll 1974)

H = Ky + 5Ga= K+ 3Ga+ (1 - Kaf KoM, (19)
C = (1 - Ko/ KoM, (20)

where
M= 1/[(1 - 6 — Ko/ KK + /K. (21)

The constants are drained bulk and shear madylandG;, the unjacketed bulk modulus;,
and fluid bulk moduluss;. Korringa (1981) showed equations (19)-(21) to be corredbag

as the porous material may be considered homogeneous ondtosoopic scale as well as the
macroscopic scale. Also, see a recent tutorial on Gasssaguations (Gassmann 1951) by
Berryman (1999).

This set of equations together with the identification offdetors that determine the coef-
ficients in the equations is the lasting contribution to teé&lfof poroelasticity that we attribute
to Biot, Gassmann, Skempton, and Willis by using their name®ference to the various
equations and coefficients.

Up-scaling

At this point, the question could reasonably be asked “Hgsuprscaling occurred yet?”
Biot’s work is very well motivated by the physics and by thgsmntities that can be measured
and/or controlled in the laboratory. The equations shovencampletely general for internal
energiesk of any poroelastic system. They may not provide everythimgneed to know
or understand about how fluids move, or how energy is dissipat these systems, but they
are correct as far as they go. This theory is often describégl@nomenological,” meaning
that it provides equations that describe the behavior opthysical system of interest, but still
requires measurements for the coefficients to be known. chasacterization is accurate, but
it should not be interpreted as an implicit criticism of thedry. To take a critical point of view
consistently for all such phenomenological theories iglgunot fruitful, as for example most
theories including those of elasticity, Maxwell’'s equatpetc., are also phenomenological in
exactly the same sense.



What Biot has accomplished is very important neverthelasshese equations are suffi-
ciently general that we can start making use of them to dacafirg). In particular, because of
their very general nature, the same equations apply botieahicroscale and the macroscale,
as well as at all the mesoscales in between these limits.eTibex lower limit below which
Biot’s theory cannot be used, and this comes in the form of BX Representative elementary
volume). This volume needs to have sufficient size so thatlligenerally include both solid
grains and fluids simultaneously. A typical rule of thumbhigtta cubical REV should be about
two to five grains on a side (Bourbié et al. 1987), or more. @jpmum size of the REV can
depend on the wavelength of the waves, but for seismic waithslavge wavelengths this is
seldom an issue. For larger REVs and longer wavelengthigedtlg becomes essential to con-
sider up-scaling as the required effective coefficientsiot'8 equations may contain a great
many types of grains, pores, and fluids — and at many scales.

Mixture theory becomes relevant in this context because litaised on energy concepts,
much like Biot’s approach. However, mixture theory statttha level of the individual con-
stituents, keeping track of the energy in each of these,lmmgroviding a means of generating
the equations of motion for the overall system. In one ofrthist applications of this method,
Bedford and Drumheller (1979) applied their technique toope media. The framework of
their approach was Eulerian, which is sensible for poroudian&hen the resulting equations
of motion are linear. Berryman and Thigpen (1985) appliedsdime basic method to nonlinear
and especially semilinear [as defined by Biot (1973)] porsxstems, and showed that a La-
grangian approach was preferred in this case. But the imgglithear equations of motion are
the same for either the Eulerian or Lagrangian methods. €lalsdl of this work are a bit too
specialized for the present short review, and we will ledve the interested reader to follow
up with the pertinent references.

HOMOGENIZATION THEORY

A two-space method of homogenization leading to equatia@wnlg the form of Biot's
equations has been presented by Burridge and Keller (198i9.method has been developed
by various authors including Bensoussan et al. (1978),eK€ll977), and Sanchez-Palencia
(1980). The method requires that the microscale of the bgégreous porous medium is much
smaller than the macroscale of most interest. The methogktersatic, leading to equations
at the macroscale from an analysis of the microscale behaviich for the present problem
involves assuming the the solid components obey lineagzptions of elasticity, while the
fluid components obey linearized Navier-Stokes equati@sridge and Keller (1981) show
that there are actually two possible solutions to the prabl©ne solution is essentially that
of Biot’s theory of wave propagation in poroelastic medicneTother is a set of viscoelastic
equations. The small quantity being the ratio of the microscale size to the macroscagg &z
used to characterize various scaling regimes. The diféerésading to the two quite different
results found by Burridge and Keller is that, when the scaiedosity is treated as being of
order 2, they get the Biot-Gassmann equations, whereas when ieasett as order unity,
they obtain equations of viscoelasticity instead. In thegleage of poroelasticity, the case
leading to viscoelastic equations is what is normally tetrfiendrained,” meaning that the
fluid does not have sufficient time for its pressure to equitid at the microscale throughout
the macromedium on the time scales of interest. This fattuegjuilibrate can occur due to low
fluid permeabilities, high viscosity, very high wave frequies, or combinations of all these
effects when present.

The approach involves assuming that any quardgityan be treated as if it is a function of



the two spatial scales andy = x/e. The macroscale ig and the microscale ig. Spatial
gradientsV of ) can then be usefully written as

VQ(x,y) = VQ(x,x/€) = VxQ + ¢ 'VyQ. (22)

Thus, the scale separation can be explicitly and simply @ated for in such gradient equa-
tions. Furthermore, each quantifycan also be treated as a functiorep$o that an asymptotic
expansion of the form

2
Qx.¥.6) = Qolx,¥) +€Qi(x.) + 5Qulx,y) + O(e?) (23)
may be written. Combining (22) and (23) gives

VQ = e 'VyQo(x,y) + [VxQo(X,y) + VyQ1(x,y)] + O(e), (24)

a result which gets used repeatedly in the subsequent @afgthermore, Eqg. (24) already
suggests the important result that, whkea small —i.e., tending to zero, it must generally be
true that

VyQO(Xv y) = 07 (25)

which is in fact a common result of this analysis.

If we let €2 be the domain occupied by solif?,; the domain occupied by fluid, aritf ¢
be the interface between solid and fluid, then the linear&pdations for elasticity of the solid
in Qg are

—w?pou, =V -7, where 7= LVu,, (26)
the linearized equations of Navier-Stokes for the fluid are
WPV = V- of where of = —pf[ + I/DVVf and wpy = -V Vf/Kf. 27)

The boundary conditions at the interfacgs, s are no slip: vy = iwu,, and continuity of
normal stressn- oy = n-7. The fluid and solid densities apg andp,, respectively. The fluid
viscosity isv, and its bulk modulus i€(;. The stress tensors for fluid and solid areandr,
respectively, ang; is the fluid pressureL is the fourth rank elastic stiffness tensor, ands
the operator that produces the symmetrized deviatoricgbarsecond rank tensor.

We will use a notation slightly different from that of Burgd and Keller (1981) in order to
facilitate the comparisons between these results and tfd3®t. Space constraints will not
permit us to follow the derivation of the equations furtherén But one of the final macroscale
results of the analysis is given by

—w2(puo + hW) = V- (70 — ¢pol), (28)

wherep = (1 — ¢)ps + ¢ps, and¢ is the porosity. The overbar indicates a volume average
over the fast variablg. The second macroscale result is

—w? [ppug + T(w)W] = —Vxpo. (29)
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wherel'(w) is a viscodynamic operator. The theory also shows that trezoseale stress and
fluid pressure are determined by

70 — ¢pol = JVxug+ CVy - W1 (30)
and
poZ—Cvx'UQ—MVx-W, (31)

whereC and M are well defined scalar coefficients ads a fourth rank tensor, all of which
arise naturally within the two-scale analysis.

When equations (28)—(31) are compared with Biot's equat{@3), we find that the form
of these equations is identical — once we have taken cardéapiet each of these expressions
in terms of the corresponding expressions in the other ssjditions, as was done in the orig-
inal publication by Burridge and Keller (1981). Thus, thetspace homogenization method
produces exactly the same equations as Biot found usingahistional approach. One advan-
tage that the present method has is that it also producesteddéfirmulas for the coefficients in
these equations, so — at least in principle — model calariatcan be done to produce a set
of theoretical examples to study the quantitative behavidhese coefficients. As far as | am
aware, this step has never been taken. It is not necessasyjyte compute these coefficients
from the formulas, but it would nevertheless be an intemgstixercise in the theory to do so.

In contrast, the volume averaging methods to be discussedats produce the same
equations, but they do not produce formulas for the coeffisie So the volume averaging
approach is phenomenologicak., producing a set of equations whose coefficients must be
determined experimentally.

VOLUME AVERAGING METHODS
Pride et al. (1992) studied the way in which the equations afion for sound traveling

through a solid/fluid mixture can be derived from first prpies when it is assumed that the
solid is porous, but contains only a single type of minerahe Tluid is homogeneous and
completely fills the pores. Various other authors have aladied volume averaging both
for the simple single-constituent poroelasticity and farltinconstituent generalizations such
as double-porosity poroelasticity (Tuncay and Corapcadd95; Pride and Berryman 1998;
Berryman and Pride 1998; Pride and Berryman 2003a; Prid@amgman 2003b).

The averaging theorem

The averaging theorem used by all these authors is due tt®I$I141967) and is based
on well-known mathematics (Green’s theorem and the divergeheorem) together with the
idea that in relatively small regiongolume averages of spatial gradierits statistically ho-
mogeneous media are presumably closely relategtadients of volume average®ut care
must nevertheless be taken to account properly for behafiibe averaged quantities at points
or surfaces where abrupt changes occur. In particular, wheemguantity to be averaged ex-
ists on one side of an interface and does not exist on the sitiey an interior interface term
will contribute to the volume average of the derivative, bat to the derivative of the volume
average.

Suppose thaf) is a quantity to be averaged) can be a scalar, vector, or tensor. For
convenience of the discussion, we will assume that the gireyavolume is a finite sphere
centered at positior, although other choices are also possible (Pride and Bamif98). We
label this volume&(x) and the surface of this volumed$). The exterior surface has two parts
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081 = 0Ey+0Eq, with OE, being the part where the quantity of inter€stanishes identically
and0E( being the part wher@ # 0. For example() could represent some physical quantity
in the pore space artlin the solid — or vice versa — depending on immediate interbst
addition to the exterior surface, there are also interiofases wherg) changes abruptly to
zero and we label such surfaceky, for interior. The interior surface is the bounding surface
for the region we will labelq, i.e,, the region wherein the quantity to be averaged is
nonzero. With these definitions, Green’s theorem gives

/VQd%:/ VQd%:/ ﬁQst+/ f10Q dS, 32)
Q QQ BEQ 8IQ

whereds$ is the infinitesimal of the surface volume element, aggis the unit outward normal
vector from the region containing nonzego The main point of (32) is just th&atEg + 01 is
the entire bounding surface ¢fin the volumef). As an example of the meaning of this result,
considerQ to be a vector quantity, take the trace of (32), and the résiiist a statement of
the well-known divergence theorem for vectors.

A second result of interest is that

v/Qd%:v Qd%:/ f10Q dS. (33)
Q QQ BEQ

The result (33) follows from the fact that the volum@éx) and2(x + dx) contain virtually
the same internal surfaces (in the limi# — 0 they are obviously identical) and so these do
not contribute to the gradient.

Combining these results finally gives

/BEQ ﬁQQdS:VAQd3x:AVQd3x—/aIQ AQ dS, (34)

Dividing by the total volumé/ = [, d®z (which is a constant scalar, since the siz&dé the
same everywhere) contained{ingives the averaging theorem:

V(Q = (VQ) -4 [ noQas. (35)
Q

Also note that the averagé)) is an average over the whole volume(@f while we also
sometimes need to consider the partial aver@geelated to the full volume average by

(Q) = 10Q, (36)

wherey, is the volume fraction of2 in which @ is nonzero.

Finally, although this dependence is often not explicitipwn or even mentioned, all the
average quantities are in fact functions of the particuteniae of averaging volumg(x). In
principle, ©2(x) can be as large as the sample being studied, or as small asddeghe le-
gitimacy of the averaging theorem itself does not dependl @nathe size of this averaging
volume. However, the usefulness of the resulting meso- arrorscale equations does de-
pend on this choice and so some intermediate size is genpreked for(2(x). Too small of
an averaging volume implies rapid fluctuations in the qustiof interest (like the fluid and
solid dilatations), while a very large averaging volume liegpall the coefficients in the equa-
tions are universal constants and, therefore, can prewefrom studying the effects of local
inhomogeneities, whenever they are present.
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Note, for example, that a most desirable (but not alwaysectrconsequence of (35) is
for the final surface integral to vanish identically. The ighaing of this integral is natural in
statistically homogeneous media because the unit outwardal vector averages to zerodjf
is approximately constant on this surface. Vanishing of shirface integral is therefore often
highly likely in reasonably homogeneous media in 3D (avieiagver a 2D surface), still likely
but somewhat less so in 2D (averaging over a 1D curve), andriergl will not vanish in 1D
(averaging over just two points) for any but some ratheidtrisnodel problems. So volume
averaging methods should be replaced in 1D by exact methmifsas, for example, Backus
averaging (Backus 1962) for pertinent 1D applications.

In wave problems, whef® is larger than the wavelength, the displacements will tend t
average to zero, which is clearly an undesirable resultderai al. (1992) provide further
discussion of criteria for choosing the size of the averggiolume. Thus, the choice of the
averaging volume is often based on the same or similar igsoesally used to pick an REV
(representative elementary volume) in other methods, leubelieve it is useful to maintain a
strict distinction between these two concepts as the ntaivafor choices made are sometimes
different.

Applications

Volume averaging has been applied successfully to derizdaitm of Biot’s equations of
poroelasticity (Pride et al. 1992), and more recetly a widdety of other up-scaling prob-
lems in double-porosity poroelasticity (Tuncay and Coiagla 1995; Pride and Berryman
1998; Berryman and Pride 1998; Pride and Berryman 2003ageRud Berryman 2003b).
The method is well-suited to obtaining the forms of the eiguat but needs to be supple-
mented when the values of the coefficients in the equatianseguired. The supplements can
obviously be obtained experimentally, in which case themhean be treated as a phenomeno-
logical one — like Biot’s original formulation using Lagrgian variational principles. But,
as explained previously, being phenomenological is not pmimnitation since of most of
the theories and equations of mathematical physics areirpfenomenological in the same
sense. There are some cases in poroelasticity where vartiogistheoretical means, including
some of those already mentioned here, such as effectivaumedtieories and periodic cell ho-
mogenization theory, can be applied to obtain estimatekeotbnstants (Mavko et al. 1998;
Milton 2002). And in some special cases, exact results ase/kr{Berryman and Milton 1991;
Berryman and Pride 2002) for a two-component solid matrixhkese situations the problems
can be solved explicitly and quite easily. In most otheraditins, it remains an open question
whether the coefficients in the equations can be determioed ately either by exact or some
well-controlled but approximate means.

CONCLUSIONS

Four methods of up-scaling coupled equations at the miatego equations valid at the
mesoscale and/or macroscale for fluid-saturated and ibasi@durated porous media have been
discussed, compared, and contrasted. The four methods (@ edffective medium theory, (2)
mixture theory, (3) two-scale and multiscale homogeniratand (4) volume averaging. All
these methods have advantages for some applications autValigages for others. Effective
medium theory, mixture theory, and homogenization mettuaasall give formulas for coef-
ficients in the up-scaled equations, whereas volume avegagethods give the form of the
up-scaled equations but generally must be supplementédpivitsical arguments and/or data
in order to determine the coefficients. Homogenization heequires a great deal of math-
ematical insight from the user in order to choose apprapisagalings for use in the resulting
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power-law expansions, while volume averaging requiresenpbwysical insight to motivate the
steps needed to find coefficients. Homogenization oftenrfepeed on periodic models, while
volume averaging does not require any assumption of peitgdind can therefore be related
very directly to laboratory and/or field measurements. dgliof the homogenization process
is often limited to specific ranges of frequency — in ordestify the scaling hypotheses that
are made — and therefore cannot be used easily over widesrahfrequency. However, vol-
ume averaging methods can quite easily be used for wide tetadchdalysis. So, we learn from
these comparisons that a researcher in the theory of pstim#faand its generalizations needs
to be conversant with more than one of the methods to solMadgs generally.

In this short review, we have not attempted to cover all mashitbat might be of interest and
value for the applications considered. In particular, weehavoided discussion of ensemble
averaging methods as well as other methods that might tekddtails of the spatial statistics
of the complex heterogeneous media directly into accounpravide additional information
about important corrections to the average equations.iRpablications by Drugan and Willis
(1996) and Drugan (2003) suggest that such methods mayalsibgoeat value for analysis of
the effective equations of poroelasticity, but these apilbns await further development.
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